首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1590503篇
  免费   133438篇
  国内免费   2567篇
医药卫生   1726508篇
  2018年   14762篇
  2016年   12899篇
  2015年   15025篇
  2014年   20646篇
  2013年   31358篇
  2012年   42548篇
  2011年   44758篇
  2010年   26344篇
  2009年   25310篇
  2008年   43001篇
  2007年   45251篇
  2006年   46052篇
  2005年   44679篇
  2004年   44082篇
  2003年   42079篇
  2002年   41204篇
  2001年   75575篇
  2000年   78136篇
  1999年   65971篇
  1998年   16698篇
  1997年   15336篇
  1996年   15283篇
  1995年   15938篇
  1994年   14986篇
  1993年   14145篇
  1992年   55365篇
  1991年   53767篇
  1990年   52540篇
  1989年   50802篇
  1988年   47187篇
  1987年   46536篇
  1986年   44259篇
  1985年   42826篇
  1984年   31987篇
  1983年   27519篇
  1982年   16085篇
  1981年   14375篇
  1980年   13491篇
  1979年   30414篇
  1978年   21022篇
  1977年   17693篇
  1976年   16649篇
  1975年   17516篇
  1974年   21450篇
  1973年   20643篇
  1972年   18842篇
  1971年   17752篇
  1970年   16270篇
  1969年   15252篇
  1968年   13936篇
排序方式: 共有10000条查询结果,搜索用时 169 毫秒
51.
Karyotypic analysis at time of diagnosis has an important value in determining initial response to treatment, remission duration and overall survival (OS) in acute myeloid leukemia (AML). Less is known about its value before allogeneic hematopoietic cell transplantation (allo‐HCT) in patients transplanted with active disease, either relapsed or primary refractory (Rel‐Ref) AML. We explored the impact of cytogenetic risk (stratification according to MRC‐UK) in 2089 patients with either Ref (n = 972) or Rel AML (n = 1117) transplanted during the period 2000‐2017. Overall, 154 patients had a favorable risk, 1283 had an intermediate risk and 652 had an adverse cytogenetic risk. Median follow‐up was 49 months. Compared to the favorable risk group, intermediate and adverse risk patients were associated with worse leukemia‐free survival and OS and also with a higher incidence of relapse. In a subgroup analysis of patients in the intermediate risk group harboring Fms‐like tyrosine kinase 3‐internal tandem duplication (FLT3‐ITD), this remained an important prognostic factor, being associated with worse outcomes. When analyzing patients according to the intensity of the conditioning regimen, no differences were observed for the main transplant outcomes. In conclusion, in patients diagnosed with AML and transplanted with active disease, karyotype remains an important prognostic factor, allowing splitting patients into different risk groups according to their cytogenetics. Similarly, FLT3‐ITD mutation also remains a negative prognostic factor in this population.  相似文献   
52.
BackgroundThe optimal regimen for intravenous administration of intraoperative fluids remains unclear. Our goal was to analyze intraoperative crystalloid volume administration practices and their association with postoperative outcomes.MethodsWe extracted clinical data from two multicenter observational studies including adult patients undergoing colorectal surgery and total hip (THA) and knee arthroplasty (TKA). We analyzed the distribution of intraoperative fluid administration. Regression was performed using a general linear model to determine factors predictive of fluid administration. Patient outcomes and intraoperative crystalloid utilization were summarized for each surgical cohort. Regression models were developed to evaluate associations of high or low intraoperative crystalloid with the likelihood of increased postoperative complications, mainly acute kidney injury (AKI) and hospital length of stay (LOS).Results7,580 patients were included. The average adjusted intraoperative crystalloid infusion rate across all surgeries was to 7.9 (SD 4) mL/kg/h. The regression model strongly favored the type of surgery over other patient predictors. We found that high fluid volume was associated with 40% greater odds ratio (OR 1.40; 95% confidence interval1.01-1.95, p = 0.044) of postoperative complications in patients undergoing THA, while we found no associations for the other types of surgeries, AKI and LOSConclusionsA wide variability was observed in intraoperative crystalloid volume administration; however, this did not affect postoperative outcomes.  相似文献   
53.
PurposeThe purpose of this study was to compare morphologic assessment and relaxometry of patellar hyaline cartilage between conventional sequences (fast spin-echo [FSE] T2-weighted fat-saturated and T2-mapping) and synthetic T2 short-TI inversion recovery (STIR) and T2 maps at 1.5 T magnetic resonance imaging (MRI).MethodThe MRI examinations of the knee obtained at 1.5 T in 49 consecutive patients were retrospectively studied. There were 21 men and 28 women with a mean age of 45 ± 17.7 (SD) years (range: 18–88 years). Conventional and synthetic acquisitions were performed, including T2-weighted fat-saturated and T2-mapping sequences. Two radiologists independently compared patellar cartilage T2-relaxation time on conventional T2-mapping and synthetic T2-mapping images. A third radiologist evaluated the patellar cartilage morphology on conventional and synthetic T2-weighted images. The presence of artifacts was also assessed. Interobserver agreement for quantitative variables was assessed using intraclass correlation coefficient (ICC).ResultsIn vitro, conventional and synthetic T2 maps yielded similar mean T2 values 58.5 ± 2.3 (SD) ms and 58.8 ± 2.6 (SD) ms, respectively (P = 0.414) and 6% lower than the expected experimental values (P = 0.038). Synthetic images allowed for a 15% reduction in examination time compared to conventional images. On conventional sequences, patellar chondropathy was identified in 35 patients (35/49; 71%) with a mean chondropathy grade of 4.8 ± 4.8 (SD). On synthetic images, 28 patients (28/49; 57%) were diagnosed with patellar chondropathy, with a significant 14% difference (P = 0.009) and lower chondropathy scores (3.7 ± 4.9 [SD]) compared to conventional images. Motion artifacts were more frequently observed on synthetic images (18%) than on conventional ones (6%). The interobserver agreement was excellent for both conventional and synthetic T2 maps (ICC > 0.83). Mean cartilage T2 values were significantly greater on synthetic images (36.2 ± 3.8 [SD] ms; range: 29-46 ms) relative to conventional T2 maps (31.8 ± 4.1 [SD] ms; range: 26-49 ms) (P < 0.0001).ConclusionDespite a decrease in examination duration, synthetic images convey lower diagnostic performance for chondropathy, greater prevalence of motion artifacts, and an overestimation of T2 values compared to conventional MRI sequences.  相似文献   
54.
55.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号